o
    Ó\iK  ã                   @   s  d dl Z d dlmZ d dlmZmZmZmZmZ d dl	m
Z
mZ eeegdgddddddddœ	eegg d	¢dd
dgddddœgZejejejejejgd
ddgddddddœejejejejejgdgdddddd d ¡ ¡dœgZe j de¡edd„ ƒƒZe j de¡edd„ ƒƒZdS )é    N)Úmetrics)ÚBaggingClassifierÚBaggingRegressorÚIsolationForestÚStackingClassifierÚStackingRegressor)Úassert_docstring_consistencyÚskip_if_no_numpydocÚmax_samplesFz4The number of samples to draw from X to train each.*)	ÚobjectsÚinclude_paramsÚexclude_paramsÚinclude_attrsÚexclude_attrsÚinclude_returnsÚexclude_returnsÚdescr_regex_patternÚignore_types)ÚcvÚn_jobsÚpassthroughÚverboseTÚfinal_estimator_)r   r   r   r   r   r   r   r   ÚaverageÚzero_divisionú a/  This parameter is required for multiclass/multilabel targets\.
            If ``None``, the metrics for each class are returned\. Otherwise, this
            determines the type of averaging performed on the data:
            ``'binary'``:
                Only report results for the class specified by ``pos_label``\.
                This is applicable only if targets \(``y_\{true,pred\}``\) are binary\.
            ``'micro'``:
                Calculate metrics globally by counting the total true positives,
                false negatives and false positives\.
            ``'macro'``:
                Calculate metrics for each label, and find their unweighted
                mean\.  This does not take label imbalance into account\.
            ``'weighted'``:
                Calculate metrics for each label, and find their average weighted
                by support \(the number of true instances for each label\)\. This
                alters 'macro' to account for label imbalance; it can result in an
                F-score that is not between precision and recall\.[\s\w]*\.*
            ``'samples'``:
                Calculate metrics for each instance, and find their average \(only
                meaningful for multilabel classification where this differs from
                :func:`accuracy_score`\)\.Úcasec                 C   ó   t di | ¤Ž dS )z@Check docstrings parameters consistency between related classes.N© ©r   ©r   r   r   ú”/var/www/www-root/data/www/176.119.141.140/sports-predictor/venv/lib/python3.10/site-packages/sklearn/tests/test_docstring_parameters_consistency.pyÚ test_class_docstring_consistencyf   ó   r"   c                 C   r   )zBCheck docstrings parameters consistency between related functions.Nr   r   r    r   r   r!   Ú#test_function_docstring_consistencym   r#   r$   )ÚpytestÚsklearnr   Úsklearn.ensembler   r   r   r   r   Úsklearn.utils._testingr   r	   Ú!CLASS_DOCSTRING_CONSISTENCY_CASESÚprecision_recall_fscore_supportÚf1_scoreÚfbeta_scoreÚprecision_scoreÚrecall_scoreÚjoinÚsplitÚ$FUNCTION_DOCSTRING_CONSISTENCY_CASESÚmarkÚparametrizer"   r$   r   r   r   r!   Ú<module>   s|   ÷øôûòûçòï>