o
    V\ih*                     @  s   d dl mZ d dlZd dlmZ d dlmZ d dlmZ d dlm	Z	 ddl
mZ dd	lmZ G d
d deZG dd deZG dd deZG dd deZeG dd dZG dd dZG dd dejZdS )    )annotationsN)	dataclass)Enum)Optional)Union   )types)Floatc                   @     e Zd ZdZdZ	 dZdS )VectorIndexTypezEnum representing different types of VECTOR index structures.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    HNSWIVFN)__name__
__module____qualname____doc__r   r    r   r   /var/www/www-root/data/www/176.119.141.140/sports-predictor/venv/lib/python3.10/site-packages/sqlalchemy/dialects/oracle/vector.pyr      s    r   c                   @  &   e Zd ZdZdZ	 dZ	 dZ	 dZdS )VectorDistanceTypezEnum representing different types of vector distance metrics.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    	EUCLIDEANDOTCOSINE	MANHATTANN)r   r   r   r   r   r   r   r   r   r   r   r   r   )   s    r   c                   @  r   )VectorStorageFormatzEnum representing the data format used to store vector components.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    INT8BINARYFLOAT32FLOAT64N)r   r   r   r   r   r   r   r   r   r   r   r   r   H   s    r   c                   @  r
   )VectorStorageTypez}Enum representing the vector type,

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.43

    SPARSEDENSEN)r   r   r   r   r    r!   r   r   r   r   r   c   s    r   c                   @  s   e Zd ZU dZejZded< dZded< dZ	ded< dZ
ded	< dZded
< dZded< dZded< dZded< dZded< dd ZdS )VectorIndexConfiga  Define the configuration for Oracle VECTOR Index.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    :param index_type: Enum value from :class:`.VectorIndexType`
     Specifies the indexing method. For HNSW, this must be
     :attr:`.VectorIndexType.HNSW`.

    :param distance: Enum value from :class:`.VectorDistanceType`
     specifies the metric for calculating distance between VECTORS.

    :param accuracy: interger. Should be in the range 0 to 100
     Specifies the accuracy of the nearest neighbor search during
     query execution.

    :param parallel: integer. Specifies degree of parallelism.

    :param hnsw_neighbors: interger. Should be in the range 0 to
     2048. Specifies the number of nearest neighbors considered
     during the search. The attribute :attr:`.VectorIndexConfig.hnsw_neighbors`
     is HNSW index specific.

    :param hnsw_efconstruction: integer. Should be in the range 0
     to 65535. Controls the trade-off between indexing speed and
     recall quality during index construction. The attribute
     :attr:`.VectorIndexConfig.hnsw_efconstruction` is HNSW index
     specific.

    :param ivf_neighbor_partitions: integer. Should be in the range
     0 to 10,000,000. Specifies the number of partitions used to
     divide the dataset. The attribute
     :attr:`.VectorIndexConfig.ivf_neighbor_partitions` is IVF index
     specific.

    :param ivf_sample_per_partition: integer. Should be between 1
     and ``num_vectors / neighbor partitions``. Specifies the
     number of samples used per partition. The attribute
     :attr:`.VectorIndexConfig.ivf_sample_per_partition` is IVF index
     specific.

    :param ivf_min_vectors_per_partition: integer. From 0 (no trimming)
     to the total number of vectors (results in 1 partition). Specifies
     the minimum number of vectors per partition. The attribute
     :attr:`.VectorIndexConfig.ivf_min_vectors_per_partition`
     is IVF index specific.

    r   
index_typeNzOptional[VectorDistanceType]distancezOptional[int]accuracyhnsw_neighborshnsw_efconstructionivf_neighbor_partitionsivf_sample_per_partitionivf_min_vectors_per_partitionparallelc                 C  sN   t | j| _dD ]}t| |}|d ur$t|ts$t| dt|j qd S )N)r&   r'   r(   r)   r*   r+   r%   z$ must be an integer ifprovided, got )r   r#   getattr
isinstanceint	TypeErrortyper   )selffieldvaluer   r   r   __post_init__   s   
	zVectorIndexConfig.__post_init__)r   r   r   r   r   r   r#   __annotations__r$   r%   r&   r'   r(   r)   r*   r+   r4   r   r   r   r   r"   x   s   
 2r"   c                   @  s"   e Zd ZdZdddZd	d
 ZdS )SparseVectorz
    Lightweight SQLAlchemy-side version of SparseVector.
    This mimics oracledb.SparseVector.

    .. versionadded:: 2.0.43

    num_dimensionsr.   indicesUnion[list, array.array]valuesc                 C  sh   t |tjr|jdkrtd|}t |tjstd|}t|t|kr)td|| _|| _|| _d S )NIdz.indices and values must be of the same length!)r-   arraytypecodelenr/   r7   r8   r:   )r1   r7   r8   r:   r   r   r   __init__   s   
zSparseVector.__init__c                 C  s$   d| j  dt| j d| jj dS )NzSparseVector(num_dimensions=z, size=z, typecode=))r7   r?   r8   r:   r>   )r1   r   r   r   __str__   s   
zSparseVector.__str__N)r7   r.   r8   r9   r:   r9   )r   r   r   r   r@   rB   r   r   r   r   r6      s    
r6   c                   @  sj   e Zd ZdZdZd Zejdejdej	dej
diZddd	Zd
d Zdd Zdd ZG dd dejjZdS )VECTORzOracle VECTOR datatype.

    For complete background on using this type, see
    :ref:`oracle_vector_datatype`.

    .. versionadded:: 2.0.41

    TbBfr<   Nc                 C  sd   |durt |tstd|durt |tstd|dur't |ts'td|| _|| _|| _dS )a  Construct a VECTOR.

        :param dim: integer. The dimension of the VECTOR datatype. This
         should be an integer value.

        :param storage_format: VectorStorageFormat. The VECTOR storage
         type format. This should be Enum values form
         :class:`.VectorStorageFormat` INT8, BINARY, FLOAT32, or FLOAT64.

        :param storage_type: VectorStorageType. The Vector storage type. This
         should be Enum values from :class:`.VectorStorageType` SPARSE or
         DENSE.

        Nzdim must be an intergerz:storage_format must be an enum of type VectorStorageFormatz6storage_type must be an enum of type VectorStorageType)r-   r.   r/   r   r   dimstorage_formatstorage_type)r1   rG   rH   rI   r   r   r   r@      s"   


zVECTOR.__init__c                   s    fdd}|S )z
        Converts a Python-side SparseVector instance into an
        oracledb.SparseVectormor a compatible array format before
        binding it to the database.
        c                   sf   | d u s
t | tjr| S t | trj}t|| } | S t | tr/ j| j| j| j	S t
d)Nz
                    Invalid input for VECTOR: expected a list, an array.array,
                    or a SparseVector object.
                    )r-   r=   list_array_typecoderH   r6   dbapir7   r8   r:   r/   )r3   r>   dialectr1   r   r   process)  s   

z.VECTOR._cached_bind_processor.<locals>.processr   )r1   rN   rO   r   rM   r   _cached_bind_processor"  s   zVECTOR._cached_bind_processorc                   s    fdd}|S )a  
        Converts database-returned values into Python-native representations.
        If the value is an oracledb.SparseVector, it is converted into the
        SQLAlchemy-side SparseVector class.
        If the value is a array.array, it is converted to a plain Python list.

        c                   sF   | d u rd S t | tjrt| S t |  jjr!t| j| j| jdS d S )N)r7   r8   r:   )r-   r=   rJ   rL   r6   r7   r8   r:   )r3   rN   r   r   rO   N  s   z0VECTOR._cached_result_processor.<locals>.processr   )r1   rN   coltyperO   r   rQ   r   _cached_result_processorE  s   	zVECTOR._cached_result_processorc                 C  s   | j |dS )z7
        Map storage format to array typecode.
        r<   )_typecode_mapget)r1   r>   r   r   r   rK   _  s   zVECTOR._array_typecodec                   @  s$   e Zd Zdd Zdd Zdd ZdS )zVECTOR.comparator_factoryc                 C     | j dtd|S )Nz<->return_typeopr	   r1   otherr   r   r   l2_distancef     z%VECTOR.comparator_factory.l2_distancec                 C  rV   )Nz<#>rW   rY   r[   r   r   r   inner_producti  r^   z'VECTOR.comparator_factory.inner_productc                 C  rV   )Nz<=>rW   rY   r[   r   r   r   cosine_distancel  r^   z)VECTOR.comparator_factory.cosine_distanceN)r   r   r   r]   r_   r`   r   r   r   r   comparator_factorye  s    ra   )NNN)r   r   r   r   cache_ok__visit_name__r   r   r   r   r   rT   r@   rP   rS   rK   r   
TypeEngine
Comparatorra   r   r   r   r   rC      s    	
##rC   )
__future__r   r=   dataclassesr   enumr   typingr   r    r   r	   r   r   r   r   r"   r6   rd   rC   r   r   r   r   <module>   s    	P!